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Pr6perties of Sompolinsky’s mean field theory of spin 
glasses 

Hans-Jiirgen Sommers 
Institut Laue-Langevin, 156X, 38042 Grenoble Cedex, France 

Received 1 July 1982 

Abstract. We derive certain properties of Sompolinsky’s mean field theory of spin glasses 
showing its consistency. We obtain an exact relation which replaces the Parisi-Toulouse 
hypothesis. Parisi‘s parameter X is identified with an averaged squared 3-spin vertex. 
We expand the solution along the de Almeida-Thouless line using a Parisi-type differential 
equation for the free energy. 

1. Introduction 

The spin glass model of Sherrington and Kirkpatrick (1975) can be solved exactly 
using the replica method or the method of diagram expansion (Sommers 1978) 
provided that the temperature exceeds a critical value which for a finite external field 
is determined by the de Almeida-Thouless (1978) instability line. Below the spin 
glass transition so-called solutions can be produced by breaking the replica symmetry. 
The most successful replica solution is that of Parisi (1979). Replica symmetry 
breaking is necessarily connected with ‘breaking of the linear response’, which means 
that due to the interaction the dependence of the local spin expectation value on the 
local external field becomes effectively more complicated than in the paramagnetic 
phase. Below the spin glass transition the diagram expansion breaks down since 
certain correlation functions do not have the usual clustering property. 

For instance, for N + CO, i # j :  

(1) 

The left-hand side determines just the internal energy (Bray and Moore 1980). We 
are considering a model of N interacting spins SI = i l  in local external fields 6, with 
the Hamiltonian 

2 22 (SISI) >(Si) (SI) . 

The brackets ( .  . . )  denote the thermal average with the weight exp(-p%). The bar 
. . . denotes the average with respect to the long-range random interactions having 
a probability distribution 

- 

P [ J , , ] x  exp -t 1 J f , N / J 2  i I<, 
(3) 

Parisi introduced one order parameter function q ( X ) ,  O S X  c 1, but the meaning of 
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the parameter X has been mysterious. It has been suggested that q(1) is connected 
with the static Edwards-Anderson order parameter q = ( S , ) 2  (Parisi 1980a, Thouless 
er al 1980). Young and Kirkpatrick (1982) pointed out that this interpretation cannot 
be correct because of inequality (1). Actually it will be published elsewhere that 
q = q(0) .  This coincides with an interpretation of the variable X which has been given 
by Sompolinsky (1981). Sompolinsky and Zippelius (1981) consider a dynamic version 
of the model. From this Sompolinsky (1981) derives an expression for the free energy 
which is stationary with respect to two order parameter functions q ( X )  and A ( X ) .  
q ( X )  is connected with an averaged local spin-spin correlation on a timescale T~ : 

The timescales are arranged in decreasing order, but all go to infinity in the thermo- 
dynamic limit. p(1 - q ( l )  + A ( X ) )  is the averaged local susceptibility on the timescale 
rx. Thus q ( X )  is connected with the time-persistent part of the spin-spin correlation. 
This idea is originally due to Edwards and Anderson (1975). However, there exists 
a whole spectrum of limits corresponding to an incomplete decay of the local dynamical 
spin-spin correlation. Our result q(0 )  = q coincides with this interpretation. It means 
that on the largest timescale the decay of the dynamical correlation is complete. q (1)  
is the spin-spin correlation on the lowest timescale; it can be calculated by Monte 
Carlo computer simulations (Kirkpatrick and Sherrington 1978, Parisi 1980b). On 
the timescale T~ linear response theory is valid; thus A ( 1 )  = 0. Fischer’s (1976) relation 
for the local susceptibility, y ( l ) = @ ( l  -q ( l ) ) ,  is valid, however, with q (1 )  instead of 
q. The parameter ACX) measures the violation of the linear response on the timescale 
T ~ .  According to their interpretations q ( X )  is an increasing and A ( X )  a decreasing 
function of X ,  which shall be proved in the following. A complete derivation on a 
purely static basis of either the Parisi theory or the Sompolinsky theory is still lacking. 
Sompolinsky’s theory can also be derived by the replica method (de Dominicis et a1 
1982). In this paper we shall derive some properties of the Sompolinsky mean field 
theory showing its consistency. Furthermore we will prove an exact relation for the 
local susceptibility which replaces the Parisi-Toulouse hypothesis. It has been pointed 
out by Sompolinsky and proved by de nominicis er a1 (1982) that Parisi‘s solution is 
obtained if we set 

A’(X)  = -Xq’(X) .  ( 5 )  

The theory of Sompolinsky is invariant under a general scale transformation of X on 
the interval (0, 1). Equation ( 5 )  means simply a choice of a new scale if [ ( X )  = 
-A’ (X) /q ’ (X)  is a monotonic function between 0 and 1. We express [ ( X )  generally 
by a 3-spin vertex. Since this vertex determines the interaction, the monotony of 
[ ( X )  corresponds to a decrease of dynamic correlations with time. 

2. Properties of Sompolinsky’s theory 

Let us start with the Sompolinsky free energy functional 

-P f  =- ( P J ) 2  ((1 -q( l ) ) ’+2  il,’ dX A ’ ( X ) q ( X ) )  
4 
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with 

and 

m = tanh PH. 
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(7) 

- 
. , . means a symmetric Gaussian functional integral with 

- 
( 9 )  

{. . .}x means averaging only over variables z (X I )  with X ’  > X .  -Pf is stationary with 
respect t o  variations of q(O), q ’ ( X ) ,  h ’ ( X )  and {m.}x as functional of z ( X ’ )  for X ’  < X .  
The  self-consistency equations are 

2 z ( X ) z ( X ‘ )  = S ( X - X ’ )  z 0 =  1 .  

with @bo = PJzOJq(o) ,  

with pb (XI = PJz (X)Jq’ lx ) ,  and 

W e  have added the t e E w i t h  q ( 0 )  to Sompolinsky’s expression for PH since in a 
finite external field, 6 ,  {m} ;  is certainly not equal to 0. Equation (10) is the same as 

equation ( 1 1 )  for X + O .  A(1)  = O .  If we add a term (PJ)’h(l)m to PH and a 
corresponding term to  - P f  we can make -P f  stationary with respect t o  A i l ) ;  however, 
a non-trivial solution (unequal to Sommers’s (1978) solution) is obtained only for 
h(1) = 0. 

From equations ( 7 )  and (8) we find the following functional integral equation for 
Sm/Spb ( X ) :  

d e l  

From this it is immediately seen that Sm/Spb(X)  3 0 for A’(X)  G 0. Furthermore 

Sm Sm am -- 
SPb ( 1 )  - - m 2  6Pb (0) - dPbo‘ 

Let us differentiate equation ( 1 2 )  with respect to X :  

Thus q ’ ( X )  is self-consistently non-negative. If we expand rn in powers of 
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Jct8 p b  ( X )  dX we get, in the limit S -P 0, 

This kind of differentiation is rather tricky, since we always have to expand up to  
second order of the integral to get a contribution proportional to S in the average. 

Let us introduce the notation 

Then the self-consistency equations (1 1) and (12) are 

Equation (16) reads now 

q ’ ( X ) [ 1 -  (pJ)2r2(X)2]  = 0. 

This equation means q ’ ( X )  = 0 or 

Thus for X = 1 

which is just the Bray-Moore (1979) condition for a soft mode. However, remember 
that this equation is not valid for the equilibrium expectation values: m f (Si). Instead 
for X + 0 we have 

which together with the information q(0 )  + 0 for b -+ 0 gives the constant susceptibility 
for b + 0. However, equation (20) is correct for all external fields and represents the 
correct formulation of the Parisi-Toulouse (1980) hypothesis. According to Som- 
polinsky and Zippelius (1981), equation (19) means marginal dynamic stability. We 
have found that an analogous equation is valid on each timescale provided that 
q ’ ( X )  # 0. Let us now consider the second self-consistency equation (1 1) and derivate 
it with respect to X .  From equation (13) we get 

Comparing equations (13) and (21) we find 

since T 2 ( X )  does not depend on z ( X ’ )  for X ‘  > X .  Derivating now equation (1 1) with 
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respect to X we find 

A’(x) = (p~)’r,(x)*s’cx). (23) 

Thus equation (18) is valid if A’(X)  and q ’ ( X )  are not equal to zero simultaneously. 
Assume now that A ’ ( X )  and q ’ ( X )  are identically equal to 0 in a whole interval. 
Then, since this interval does not contribute to the functional integral at all, we may 
define new continuous functions, A ( X )  and q ( X ) ,  eliminating the flat region and 
rescaling X on the interval (0, 1) without changing -pf. Therefore either both A‘(X) 
and q ’ ( X )  0 (Sherrington-Kirkpatrick solution) or we may assume that q ‘ ( X )  and 
A’(X)  are monotonic functions never constant on any sub-interval of (0, 1). We shall 
see soon that q ’ ( X )  and h ’ ( X )  cannot be zero separately. Note that, together with 
the information A ’ ( X )  $0, q ’ ( X )  + 0, A(1) = 0, both self-consistency equations (1 1) and 
(12) are equivalent to equation (18) with the initial condition 

Instead of equation (24) we may also choose 

since equation (24) follows then by integration of equation (16). For 6 + 0 equation 
(25) obviously has the solution q ( 0 )  = 0. Then equation (18) is the only independent 
self-consistency equation. From equation (20)  the constant susceptibility for b + 0 
follows. 

We try now to get further information by differentiating equation (18) with respect 
to X .  The result is 

0 = q ’ ( X ) m + 2 A . ’ ( X ) r 2 ( X ) 3 .  (26) 

The first term follows in analogy to equation (16), the second using equation (22). 
Both coefficients are positive: thus, if q ‘ ( X )  = 0, then A’(X)  = 0 too and vice versa. 
Furthermore A’(X)  is self-consistently non-positive. Comparing with Parisi’s X ,  
equation ( 5 ) ,  we have 

( ( X )  varies between 

and 

Note that the last parameter just determines the critical index for the low-frequency 
behaviour of the dynamical susceptibility according to the theory of Sompolinsky and 
Zippelius (1981). The monotonous increase of ( ( X )  corresponds to a decrease of 
dynamic correlations with time. We can calculate (‘(X) using the above method, 
which can be seen to be positive in certain limiting cases; however, we did not succeed 
in a general proof. 

Assuming the monotony, we can choose [ ( X )  as a new scale. It is not yet normalised 
to the interval (0, 1). If we extend the solution constant outside the interval ([(O), 
((1)) (which does not affect the free energy) we get exactly the Parisi result. The 
stability analysis of Thouless et a1 (1980) is valid since indeed q’ (X)==O;  the flat 
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regions in Parisi's solution are not of physical importance. It remains also to show 
that [ ( X )  is actually smaller than 1. Since it is maximal for X = 1 we have to show 
using equation (29) 

M > O .  (30) 

At least along the de Almeida-Thouless instability line we can show the inequality. 
There the left-hand side goes to 1 for T + T,  (b  + O j  and to $ for T -PO ( b  -+CO). 

Expansion along the instability line shows that condition (30) ensures that h(0) never 
becomes singular along the whole instability line. 

3. Expansion near the transition 

Now we derive a Parisi differential equation for the Sompolinsky free energy functional. 
This has already been done with the help of the replica method by de Dominicis er 
a1 (1982). We may write 

(31) 

where 4 (pb, X j  is equal to the corresponding expression in equation (6) with q ' (X ' )  
and h ' ( X ' )  set equal to zero for X ' < X .  It then follows immediately that 

with 

& = (pJ)2/2.  (33) 

The first term is obtained as usual by expanding with respect to j,"'8 P b ( X )  dX up 
to second order, the second term simply by differentiating the integrals at the lower 
bound. { m } x  has not to be differentiated because of stationarity. Since X is the 
longest timescale that occurs, we can replace S/SPb ( X )  by a/apb. Thus we obtain 

with the boundary condition 

4 ( Y ,  1) = log(2 cosh Y ) .  (35) 

Equations (37) and (38) can be converted into an integral equation which can be 
iterated. The iteration yields the expansion along the de Almeida-Thouless line. 

In this way we expanded 4 ( Y. 0) up to third order: 

1 

+ E  3 ( f ~ m ( 5 ) -  8 dX A'(X)f(X) 'm'm' '  
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- Sf(0) 5 dX A’(X)f(X)(l - 5 m 2 ) m ”  

+ 8 JO’ 

0 

A’(X)CA(X) - A(O))f(X)(l - 3m’)mf2) 

with 

f(X) = q (1) - q (XI - m = tanh Y. 

(36) 

(37) 

Variation of the free energy with respect to q ’ ( X )  (or A‘(X)) gives 

0 = “ 3 ~ ( ~ ) + 2 m ~ m ’ ~ q t ( ~ )  (38) 

according to equation (26) and 

Here 

Note that A’(X) is of higher order than q ’ ( X )  for b + O .  A(0) is positive below the 
transition, and inequality (30) ensures that the denominator in equation (39) does not 
generate an additional singularity. 

We may insert equations (38) and (39) into equations (36) and (31). Then the 
free energy has to be made stationary with respect to q(0) .  We get near the de 
Almeida-Thouless line up to first order 

(41) 

where qo is the Sherrington-Kirkpatrick value of the Edwards-Anderson order para- 
meter and 

q ( 0 )  = qo -f(O) 

The result for the free energy is then up to third order 

The index means that the expressions have to be calculated for the Sherrington- 
Kirkpatrick solution. The correction is negative in the spin glass phase; thus the free 
energy is greater than for the Sherrington-Kirkpatrick solution. The transition is of 
third order for arbitrary external fields. 

4. Conclusions 

We have derived a number of unique properties of the mean field theories of Parisi 
and Sompolinski. q ( X )  must be a monotonic increasing function of X corresponding 
to an increasing decay of dynamical spin correlations with time. A(X) must be a 
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monotonic decreasing function of X corresponding to increasing renormalisation of 
the local spin due to interaction. At each timescale there exists a relation corresponding 
to marginal dynamic stability. We have derived an exact equation for all external 
fields which replaces the Parisi-Toulouse hypothesis. Using this relation we will derive 
elsewhere the low-field behaviour of the susceptibility for all temperatures 0 < T < T,. 
The ratio - A ’ ( X ) / q ’ ( X ) ,  which is equal to Parisi’s X ,  is proportional to the averaged 
square of the 3-spin vertex and thus proportional to certain self-energy diagrams for 
the susceptibility which have been neglected in a derivation (Sommers 1978) of the 
equations of Thouless er a1 (1977), because they are formally of higher order in l/N. 
These diagrams, however, diverge in the spin glass phase. This gives us a hint for 
deriving a consistent mean field theory on a purely static basis. Furthermore, we have 
derived a Parisi differential equation for the Sompolinsky free energy functional. The 
solution has been expanded along the de Almeida-Thouless line for arbitrary external 
fields. The transition is of third order, in contrast to the prediction of Parisi and 
Toulouse (1980). 
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